接着来。。遵守诺言.。公式先不研究了
1573
看来游戏不好玩了。。大家都不知道才好玩。。祝大家愉快
游戏表述:有n堆火柴,每堆各有若干根。两人轮流取出火柴,每次取出的根数不限但至少取1根,每次也只能从1堆里取火柴。谁最后把火柴取完,谁就是获胜者。问如何才能保证获胜。
获胜策略已由美国数学家C.L.Bouton分析完成,用到的是二进制和平衡状态概念。其结论是:
如果一开始火柴的总根数转化成二进制后各位数上的数字和都是偶数时,则是平衡状态,后取者必胜。最简单的平衡态是(1,1),即2堆火柴,每堆各1根。
如果开始时火柴的状态处于不平衡状态,先取者必胜,其策略是取完后使火柴根数保持为平衡状态。最简单的不平衡态是(1),即1根火柴。
例如,2堆火柴数都为2根,二进制记为(10,10),各位数之和为20,这是一个平衡态,则后取者必胜。3堆火柴数分别为1根、2根、1根,二进制记为(1,10,1),各位数之和为12,这不是一个平衡态。先取者先取掉中间一堆2根火柴,变成平衡状态(1,1),则先取者必胜。